² Dooley, D., "Ignition in the laminar boundary layer of a heated plate," 1957 Heat Transfer and Fluid Mechanics Institute (Stanford University Press, Stanford, Calif., 1957), pp. 321-342.

³ Toong, T. Y., "Ignition and combustion in a laminar boundary layer over a hot surface," Sixth Symposium on Combustion (Reinhold Publishing Corp., New York, 1957), pp. 532-540.

⁴ Sickman, D. V. and Rice, O. K., "Studies on the decomposi-

tion of azomethane," J. Chem. Phys. 4, 242–251 (1936).

⁵ Ziemer, R. W. and Cambel, A., "Flame stabilization in the boundary layer of heated plates," Jet Propulsion, 28, 592–599

⁶ Wu, W. S. and Toong, T. Y., "Further study on flame stabilization in a boundary layer: A mechanism of flame oscillations," Ninth Symposium on Combustion (Reinhold Publishing Corp., New York, 1963), pp. 49-58.

Accurate Values of the Exponent Governing Potential Flow about **Semi-Infinite Cones**

JOHN L. HESS* AND SUE FAULKNER† Douglas Aircraft Company, Inc., Long Beach, Calif.

T is well known that, for axisymmetric, inviscid, and incompressible flow about a semi-infinite cone, the velocity V on the surface of the cone varies with the distance s from the vertex in the following manner:

$$V = Cs^m \tag{1}$$

where C is simply a scaling constant. The flow is thus completely characterized by the exponent m, which is a function of Θ , the semivertex angle of the cone. Tabulated values of m do not appear to be readily available in the literature. Reference 1 gives a small graph of m vs θ and also lists three references, including the original work of Ref. 2. However, none of the three is contained in ordinary technical libraries.

The equation relating m and Θ is

$$P_{m+1}'(-\cos\Theta) = 0 \tag{2}$$

where the prime denotes differentiation and the function

Table 1 Values of the exponent governing potential flow about semi-infinite cones

Θ , deg	m	Θ , deg	1/m
0	0.0000000	90	1.0000000
5	0.0037441	95	0.8779641
10	0.0145329	100	0.7715075
15	0.0316314	105	0.6779398
20	0.0544316	110	0.5951432
25	0.0825162	115	0.5214293
30	0.1156458	120	0.4554368
35	0.1537334	125	0.3960580
40	0.1968232	130	0.3423826
45	0.2450773	135	0.2936569
50	0.2987690	140	0.2492515
55	0.3582834	145	0.2086378
60	0.4241237	150	0.1713673
65	0.4969244	155	0.1370604
70	0.5774709	160	0.1053903
- 75	0.6667277	165	0.0760764
80	0.7658769	170	0.0488761
85	0.8763705	175	0.0235785
90	1.0000000	180	0.0000000

Received November 25, 1964.

 P_{m+1} is the Legendre function that remains finite when its argument equals unity for all values of its order m + 1 (see Ref. 3). Using the series expansion of P_{m+1} , this equation was solved numerically for m at values of Θ ranging from 0° to 180° by 5° increments. The results are given in Table 1.

References

¹ Rosenhead, L. (ed.), Fluid Motion Memoirs. Laminar Boundary Layers (Oxford University Press, Oxford, England, 1963), p.

² Leuteritz, R. and Mangler, W., "Die symmetrische Potentialströmung gegen einen Kreiskegel," Untersuch. Mitt. Deut. Luftfahrtforsch. 3226 (1945).

³ Hildebrand, F. B., Advanced Calculus for Engineers (Prentice Hall, Inc., New York, 1949), p. 177.

Variable Collision Frequency Effects on Hall-Current Accelerator Characteristics

H. E. Brandmaier* Curtiss-Wright Corporation, Wood-Ridge, N. J.

Nomenclature

magnetic induction

ion-slip parameter

Eelectric field

charge on electron

current density Lreference length

MMach number

mass flow

 m_a atom mass

interaction parameter

pressure

parameter defined by Eq. (4) temperature

 \overline{V}

velocity

dimensionless axial coordinate = z/L

degree of ionization

α Hall parameter defined by Eq. (5)

specific heat ratio

energy conversion efficiency

mass density

electrical conductivity time between collisions

mean electron collision time $\bar{\tau}_e$

voltage difference between inlet and exit

cyclotron frequency

Subscripts

electron-ion collision

electron-atom collision

ion-atom collision ia

accelerator inlet 0 axial direction

azimuthal direction

NE-dimensional magnetogasdynamic (MGD) analyses of the coaxial Hall-current accelerator have recently been presented by Brandmaier, Durand, Gourdine, and Rubel¹ and by Cann and Marlotte.² Each considered the steady continuum flow of an ideal, electrically neutral, slightly ionized, three-species gas mixture through a narrow constant

Senior Scientist, Aerodynamics Research Group.

[†] Computing Analyst, Aerodynamics Research Group.

Received November 16, 1964. This effort was supported by U.S. government and Curtiss-Wright Independent Research

^{*} Chief Project Engineer, Wright Aeronautical Division. Associate Fellow Member AIAA.